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January 1995 marks the 90  anniversary of the birthday of  L. G. Schnirel'mann, one>2

of the most remarkable mathematicians of 1930's.

Until the present day we do not fully comprehend one of the most amazing miracles
of the twentieth century: The Moscow school of mathematics. In 1914 there was only one
internationally recognized mathematician working in Moscow. This was  Dmitrii
Fedorovich Egorov, who was working in a narrow specialty of differential geometry. At
the same time France had giants such as Poincare, Picard, Hadamard, Lebesgue, Borel;
Germany was the home to Klein, Hilbert, Weyl, all of them mathematicians of the
broadest range. They belonged to the most distinguished schools of mathematics in
centuries!

And then, so quickly, twenty years passed, seven of which were filled with wars that
devastated our country, a blink of an eye in history. But, when in the mid-thirties, a well
known American mathematician S. Lefshetz was asked who, in his opinion, were the
most remarkable young mathematicians, he named four: Gel'fond, the solver of one of the
Hilbert's problems, Kolmogorov, who made outstanding contributions to the theory of
trigonometric series, probability, topology, and many other areas of mathematics,
Pontriagin, discoverer of the new areas in topology and analysis, and Schnirel'mann, who
obtained striking results in number theory, topology, and variational calculus.

In addition, one should mention the brilliant figures such as Urysohn, who died at the
age of 26, Alexandrov, Bari, P. Novikov, Lavrentiev, Lyusternik, Petrovskii, Khinchin,ˆ
all of whose golden period of creativity happened during these years. Furthermore, those
were the years when Gel'fand was taking his first steps . . .

However, in this bouquet of remarkable talent, the accomplishments of Schnirel'mann
shine the brightest.

L. G. Schnirel'mann was born on January 2, 1905, in the town of Gomel. His father
was a teacher of Russian language.

Lev Genrikhovich, early on, has shown to have an outstanding talent. He drew, wrote
poetry, and at the age of 12 independently and on his own completed a course in
elementary mathematics. For a period of several months the youngster attended courses
in physics and mathematics given for high school graduates. There, he attracted attention
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of the instructors, to the point that they arranged for the youngster to be sent to Moscow
for further studies.

Lev Genrikhovich Schnirel'mann

At the age of 15 he already flexed his muscles in an independent work. According to
the legend (these always accompany biographies of outstanding people), he arrived in
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Moscow at the age of 16 and enrolled in the Moscow (State, tr.) University. He brought
with him notes, written in a school exercise book (made of cheap paper, better quality
was not available during those difficult times), which contained a theorem about
partitioning of a sphere. We will discuss this theorem later on, suffice it to say now is that
it played a crucial role in the solution of the Poincare problem about closed
geodesics the solution that was found later by Schnirelman, jointly with Lazarev
Aronovitch Liusternik. Solving this problem made Schnirel'mann known throughout the
world.

Upon completing his studies at the university in two and a half years, Schnirel'mann
was accepted as an aspirant at the Institute of Mathematics and Mechanics at the MGU.
Like almost all of the mathematicians mentioned by us, he was a a student of Nikolai
Nikolaevitch Lusin, the only exceptions being Pontriagin, who was a student of
Alexandrov, and Petrovski, who was a student of Egorov.

Lazar Aronovich (Liusternik, tr.) used to reminisce that Luzin, (who apparently was
inclined to view the world in a somewhat mystical way), had a dream in which a young
man (“with the same biography as Lev Genrikhovich,” the way L. A. put it), came to him
and solved the continuum hypothesis. Then, when young Schnirel'mann actually
appeared on the scene, Liusternik viewed him as a messenger from God. But
Schnirel'mann did not solve the continuum hypothesis, the solution of that problem had
to wait more than sixty years, when it was found by Paul Cohen. (It was actually only 35,
tr.)

Schnirel'mann published three of his most remarkable papers during two years: in
1929 and 1930. Here are the statements of these theorems:

Theorem 1. .Inside an arbitrary closed curve in the plane, one can inscribe a square

Consider a thin piece of thread, with both ends tied together. This results in a “closed
curve.” We toss this curve on a table, and we are guaranteed that one can find four points
on the curve, forming the vertices of a square.

Theorem 2. On an arbitrary smooth surface of spherical type, there exists three
closed geodesics.

Imagine in your mind that you are at the see shore and you pick up a very smooth
stone. Take a very thin and very elastic rubber band and stretch it over the stone in such a
way that it “does not slip.” If you succeed, you found yourself a geodesic. On the
spherical ball, the geodesics are the great circles. If the rubber band moves a bit from a
great circle it will slip off the ball. On the ellipsoid there are only three geodesics: These
are formed by intersections of the ellipsoid with the planes perpendicular to it's axes.
Poincare conjectured that “on an arbitrary smooth stone, there are at least three
geodesics.” In 1929 this conjecture was proved by Liusternik and Schnirel'mann. That
created a world wide sensation.



4

Theorem 3. There exists a natural number , such that any natural number is a sumR
of at most  prime numbersR .

Problem. Any natural number, larger or equal than six, can be represented as a sum
of three prime numbers.

This question was presented to Euler by Christian Goldbach. He was a German
mathematician who lived half of his life in Russia and who actually died in Moscow. He
posed this question in a letter from June 7, 1742. In reply, dated June 30, 1942, Euler
showed that in order to solve this problem it is enough to show that an arbitrary even
number, larger or equal to 4, is a sum of two primes.

The first progress in search of the solution of this problem (not solved until the
present day) was made by Schnirel'mann. (Prior to that time, Hardy and Littlewood
published a paper in which they prove the Goldbach hypothesis (for sufficiently large
natural numbers), under an assumption of the truth of some (heretofore unproven)
hypothesis. In 1937 I. M. Vinogradov proved the Goldbach conjecture for sufficiently
large natural numbers.) However, the most important thing here was not the fact that any
natural number can be represented by a sum of bounded number of prime terms. (In fact,
in the Schnirel'mann's method, the number of summands is estimated to be several
hundred thousands.) What was the most important was actually the highly original and
ingenious method, which can be extended to solve several other problems. We will say a
few words about this later on.

In 1931 Schnirel'mann was send abroad for three months, and the trip was a
tremendous success. For a period of time he was working in Göttingen  the Mecca of
mathematics in those days where the great Hilbert lived and worked. (Schnirel'mann is
remembered not only by his phenomenal results, but also by the fact that “walked
barefoot through the streets of  Göttingen” as Constance Reid wrote in her book about
Courant.) He was asked by the most prestigious German publisher to write a monograph,
but this was not to be: German government was taken over by fascists.

In 1933 Schnirel'mann was chosen to be a corresponding member of Academy of
Sciences of the USSR.

In 1934 the governing board of the Moscow Mathematical Society decided to conduct
the first high school mathematical Olympiad and L. G. Schnirel'mann was appointed to
the organizing committee. He was one of the initiators (together with Liusternik and
Gel'fand) of the mathematical circles at the MGU. The professors and the lecturers from
that institution would twice a month give talks to the high school students. Schnirel'mann
was also one of the organizers of these talks. In particular, he would give lectures on the
higher dimensional geometry and group theory.

Schnirel'mann was one of the first people in Moscow to study convex geometry.  He
wrote a remarkable paper on the subject of applications of convex geometry to the theory
of the best approximations. It was published posthumously.
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One should also mention one other paper of his, written jointly with L. S. Pontriagin,
on the “metric definition of dimension.” This paper had an influence on the development
of the concept of -entropy, carried out by Kolmogorov.%

Lev Genrikhovich was very friendly with Liusternik, Gel'fond, and Gel'fand. Many
people recall him as an individual of extremely high caliber, a person who was sensitive
and delicate, who had varied intellectual interests, a person of sharp mind, a keen
observer, and who was also very spiritual.

His life ended tragically: On the 24th of September 1938 he committed suicide. The
people of the older generation, with whom we had an opportunity to discuss the matter,
connect the tragedy to the bloody and senseless atmosphere of those times: They say that
NKVD became interested in Lev Genrikhovich. This made him  extremely frightened,
and he decided to end his life. Perhaps the veil of mystery over those events will be lifted
one day, when someone seeking the truth will have an opportunity to look at the archives
of KGB.

We now come to a discussion of various theorems proved by Schnirel'mann. We
begin with a result from his young age, which we already mentioned.

Theorem about partition of a sphere. Suppose a sphere is painted with three
distinct colors. Then  there exists a pair of antipodal points (i. e., diametrically opposedß
points) which are painted the same color.

This formulation needs to be made a bit more precise. Painting the sphere  withW
three colors means decomposing the sphere into three parts the union ofJ ß J ß J ß" # $

which is . Moreover, we do not require that these sets are disjoined, each point can beW
simultaneously painted with several colors. However, without additional assumptions on
the sets , the assertion is obviously false: One can decompose the sphere into two non-J3

intersecting parts  and  such that for any pair of antipodal points , one of theJ J Bß C" #

points  belongs to  and the other to . However, for an arbitrary such aBß C J J" #

decomposition, the sets  and  turn out to be not closed:  One of the sets contains aJ J" #

non-empty part of the boundary of the other. (A set  in the plane or in the space isJ
called closed if it contains its boundary. Equivalently, every point not belonging to the
set is located a positive distance from the set, and is not immediately adjacent to it.)

Now we can give a correct formulation of the theorem about decomposition of the
sphere.

Theorem 4. Suppose a sphere is covered by three closed sets. Then one of these sets
contains a pair of antipodal points.

What is meant here by a sphere is the ordinary two dimensional sphere , located inW#

the three dimensional space , and which is given by the equation ‘$ # # #
" # $B  B  B œ "Þ

Analogously, one defines a sphere  for an arbitrary natural number : It is lies in theW 88
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Ð8  "Ñ  dimensional space  and consists of the set of solutions of the equation‘Ð8"Ñ

"
3œ"

8"

3
#B œ "

If  is a point of the -dimensional sphere, then its antipode is the pointÐB ß B ß á ß B Ñ 8" # 8

Ð  B ß  B ß á ß  B Ñ" # 8 . Schnirel'mann proved his theorem for spheres of arbitrary
dimension: If an -dimensional sphere is painted in  colors (i. e., it is covered by8 8  "
closed sets ), then one can find a pair of antipodal points which are paintedJ ß á ß J" 8"

the same color.

Schnirel'mann's theorem is equivalent to another theorem, proved in 1930's by two
Polish mathematicians K. Borsuk and S. Ulam: Every continuous transformation  of the0
sphere  into the space glues together two antipodal points. Another words, there isW ß8 8‘
a point  such that (Here, and in what follows, all theB − W 0ÐBÑ œ 0Ð  BÑÞ8

transformations are assumed to be continuous.) One more, equivalent form of Borsuk-
Ulam theorem is this: . AThere exists no odd transformation 0 À W È W8 8"

transformation is called odd if  for all 's0 0Ð  BÑ œ  0ÐBÑ B Þ

Let us now explain why these three theorems are equivalent. We will denote them by
X BU (Schnirel'mann's theorem about painting of spheres),  (the theorem about gluing"

of antipodal points), and  (the theorem about the nonexistence of an oddBU#

transformation). Since , any transformation into  can be viewed as aW © W8" 8 8"‘
transformation into . In this way, the implication  is obvious.‘8

" #BU BUÊ
Conversely, suppose  holds. Let us assume that  is a counterexampleBU#

8 80 À W È ‘
for , i. e.,  a transformation which does not glue antipodal points. Then, theBU" 0
transformation given by the formula is odd and does1 À W Ä 1ÐBÑ œ 0ÐBÑ  0Ð  BÑ8 8‘
not assume the value zero. There exists a natural transformation ,< À Ö!× È W‘8 8"
which assigns to every non-zero vector  a unit vector  whichB œ ÐB ß á ß B Ñ − <ÐBÑ" 8

8‘
has the same direction as :B

<ÐBÑ œ
B

Bl l
where . The composition  is odd, contrary to .l l Œ !B œ B <1 À W W3

# 8 8"
#

"
#

È BU

We now establish the equivalence of the Borsuk-Ulam and Schnirel'mann's theorems.
We start with  and let  be closed subsets of the sphere , such thatBU1 J ß á ßJ W" 8"

8

their union is . We must show that for some , the set  contains aW 3ß " Ÿ 3 Ÿ 8  " J8
3

pair of antipodal points. If there exists a point , belonging to all the sets , the situationB J3

is clear: Some set  contains the antipodal pair . Assume now thatJ Bß  B3

J á  J B − W 0 ÐBÑ B" 8" 3
8 is empty. Then, for each , let be the distance of the point 

to the set . Hence  is a positive, non-negative function, and  ifJ 0 À W È 0 ÐBÑ œ !3 3 3
8 ‘

and only if . (Here we use the hypothesis that the sets  are closed. As aB − J J Ñ3 3

consequence of our hypothesis, the functions , never assume the value0 ß " Ÿ 3 Ÿ 8  "3
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! simultaneously, thus the function

2 œ 0"
3œ"

8"

3

is everywhere positive. Define , and1 œ ß " Ÿ 3 Ÿ 8  "3
0
2
3

KÐBÑ œ 1 ÐBÑß á ß 1 ÐBÑa b" 8

Then  is a continuous transformation. We apply the Borsuk-Ulam theorem toK À W È ‘8

K B − W 1 ÐBÑ œ 1 Ð  BÑ 3 œ "ßá ß 8 and conclude that there is , such that for each .8"
3 3

Since

1 œ "  18" 3

3œ"

8""
we also have  If  is such that , then ,1 ÐBÑ œ 1 Ð  BÑÞ 3 B − J 1 ÐBÑ œ 1 Ð  BÑ œ !8" 8" 3 3 3

thus  contains a pair of antipodal points.J3

We preface the proof of the implication  with the following remark: In theX BUÊ #

Schnirel'mann's theorem, the number  of the colors cannot be replaced by .8  " 8  #
Another words, the -dimensional sphere can be covered with a collection of closed sets8
J ß á ßJ ß" 8# none of which contains a pair of antipodal points. Let, for example

J œ B ß á ß B − W À B   ß 3 œ "ß á ß 8  "3 " 8" 3
8e fa b %

and

J œ B ßá ß B − W À B Ÿ 8# " 8" 3

3œ"

8" Ÿa b " %

For sufficiently small , the sets cover the sphere, and none of them contains% J ßáJ" 8#

a pair of antipodal points. We are now ready to prove implication . SupposeX BUÊ #

that  is an odd transformation. If follows from the previous remarks that0 À W È W8 8"

the sphere  can be covered by closed sets , none of which contains a pairW J áßJ8"
" 8"

of antipodal points. Denote by  to be pre-image of the set ,  i. e., the set of0 ÐEÑ E"

points of those , for which (  Then, is a cover of theB 0 BÑ − EÞ 0 ÐJ Ñßá ß 0 ÐJ Ñ" "
" 8"

sphere  by closed sets, none of which contains a pair of antipodal points. This isW8

impossible by the Schnirel'mann's theorem.

Let us sketch the proof of the Borsuk-Ulam theorem (in the form ) in the caseBU#

8 œ # 0 À W È W. We will show that there does not exist an odd transformation . By the# "

arguments above, this will also prove the Schnirel'mann's theorem about painting a two
dimensional sphere with three colors.

We remark that for  the Borsuk-Ulam theorem (in the form ) is trivial,8 œ " BU#

since the zero-dimensional sphere consists of two pints , and a continuous„"
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transformation of  into  must be a constant, we cannot “tear” the circle into twoW W" !

parts. We will reduce the proof of  for 2 to the case .BU# 8 œ 8 œ "

Suppose a point is moving on a circle, and after a while returns to the original
position. Intuitively, it is clear what is meant by a number of complete winds
(circumnavigations) winding number  , or the , the point makes during the entire course of
the motion (even if the movement of the point is not always in the same direction).
Formally, we can define this number as follows. Suppose the motion of the point on the
circle is described by a continuous function , where  is an interval0 À M È W M œ Ò+ß ,Ó"

on the real line. Then there exists a continuous function  such that: ‘À M È

0Ð>Ñ œ Ð>Ñß Ð>Ña bcos sin: :

for all . Such a function is determined uniquely, up an addition of a constant of the> − M
form . This means that the difference  is uniquely determined. If# 5 Ð,Ñ  Ð+Ñ1 : :
0Ð,Ñ œ 0Ð+Ñ Ð,Ñ  Ð+Ñ Î#, then  is an integer, which is then called the windinga b: : 1
number.

Suppose now we are given a continuous transformation  of a circle into0 À W È W" "

itself. We change this transformation into a transformation , by putting1 À Ò!ß # Ó È W1 "

1Ð>Ñ œ 0Ð >ß >ÑÞ 1Ð>Ñ >cos sin  The number of winds the point  makes when  varies from 0 to
# 01 is called the  of the transformation . For example, the identity transformationdegree
has degree , the constant transformation has degree , and the symmetry transformation" !
about any diameter of the circle has degree . Since the degree is an integer, it cannot "
change under a continuous deformation of the transformation. (We will not prove this
assertion, nor will we give an exact definition what is a deformation of a transformation.)

Suppose  is the closed disk bounded by the circle  We have the followingH W Þ"

Proposition 1. If the transformation  can be extended to a continuous0 À W È W" "

transformation , then the degree of  is zero.J À H È W 0"

Proof. For  and  set . The transformation (< − Ò!ß "Ó B − W 0 ÐBÑ œ JÐ<BÑ 0 BÑ"
< <

depends on  continuously, so that all the transformations have the same degree. Since< 0<
0 0 œ 0

!
 is a constant transformation, it has degree zero. Consequently, the degree of  is"

also .!

Proposition 2. If  has degree zero, then  glues together some pair of0 À W È W 0" "

antipodal points (i. e., there is a point such that ).B − W 0ÐBÑ œ 0Ð  BÑ"

Proof. From the hypothesis one can easily deduce that there exists a continuous
function  such that for all  Since  glues: ‘ : : :À M È 0ÐBÑ œ ÐBÑß ÐBÑ B − W Þa bcos sin "

together a pair of antipodal points (case  of the Borsuk-Ulam theorem), the same is8 œ "
true for .0

The case  of the Ulam-Borsuk theorem follows now directly from the8 œ #
Propositions 1 and 2. It is enough to show that any transformation  glues aJ À W È W# "

pair of antipodes. Consider the restriction  of the transformation  to the circle 0 J W ß"
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resulting from the intersection of the sphere with the horizontal plane. We identify this
circle with  and identify the resulting disk with the disk  from the Proposition 1.W ß H"

Suppose  is the projection of the upper hemisphere onto , and  be the inverse of .: H ; :
Then, the transformation  from  into  is an extension of . It followsB È JÐ;ÐBÑÑ H W 0"

from the Proposition 1 that  has degree zero. It follows then from the Proposition 2 that0
0  glues a pair of antipodal points. Thus we have proved the Borsuk-Ulam-Schnirel'mann
theorem for a two-dimensional sphere.

We will now present another remarkable example, due to Schnirel'mann, of an
application of topological methods. What we have in mind is the theorem about inscribed
square. We already have encountered the statement of this theorem: In any closed curve
one can inscribe a square. We now present the idea of the proof.

Consider the space of all quadrilaterals in the plane. Since each such quadrilateral can
be described by eight numbers, we can say that this set is .  We noweight-dimensional
consider two “four-dimensional” subsets  and  as follows: Each element of  and E F E F
will be described by four parameters. The set  will consist of all squares, and the set E F
will consist of all the quadrilaterals whose vertices lie on the curve. The theorem asserts
that these two sets intersect. We will begin with an assumption that the curve is an
ellipse. In this case, it is easy to show that there exists exactly one inscribed square. Thus,
the sets  and , when defined for an ellipse, intersect. In the general case, one canE F
continuously deform the give curve into an ellipse.

The set  will also deform continuously during that operation. One can show that in theF
case of ellipse, the sets  and  intersect in a “robust”: that intersection cannot disappearE F
under a continuous deformation. One can make an analogy with the intersection of the
meridian and the parallel on the torus (the surface of a “doughnut” see the illustration).
Consequently, and  intersect for an arbitrary curve.E F
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Carrying out the details of this idea presents several difficulties. I order to apply the
results of the corresponding theory it is necessary to assume that the sets  and  includeE F
“degenerate” squares, i. e., those for which all the vertices collapse to a single point. How
does one avoid the possibility that the intersection  will contain only suchE F
degenerate points? For this purpose Schnirel'mann assumes that the curve is sufficiently
smooth (is actually twice differentiable). Quite often, when this Schnirelman theorem is
cited, it is formulated for the general curve, without this extra hypothesis. The authors
don't know if the proof in general case was ever published.

Finally, we will describe Schnirel'mann's method in the additive number theory.
Suppose  and  are two sets of natural numbers. The  of  and  is the set,E F E Fsum
denoted by , of all the numbers of the form , where , . For ourEF +  , + − E , − F
purpose it will be more convenient to define the sum of the sets  and  as the set givenE F
by (A+B) , i. e., the set obtained from  by adding all theEŠF œ E F EF
elements of  and . We say that a set  is a basis of the natural numbers if for some E F E 5
the fold sum , coincides with the set of all natural numbers. For example,5  E Šá ŠE
if  is the set of all squares, then  is a basis. This follows from the well known theorem,E E
due to Lagrange, which says that any natural number is a sum of at most four squares.
This means that . Let  be the set of all prime numbers. Is  aEŠEŠEŠE œ T T
basis? Schnirel'mann was the first one to give a positive answer to this question. He
proved that indeed  . We now present the main ideas of that proof.T is a basis

We follow Schnirel'mann and introduce a concept of the  of a set  of naturaldensity E
numbers. For each  let  be the number of elements of the set  which are in8 − ß EÐ8Ñ E
the interval . We define the of the set to be the lower bound of theÒ"ß 8Ó density   .ÐEÑ E
numbers  taken over all  (i. e., the largest number  such that EÐ8ÑÎ8 8 − + EÐ8ÑÎ8  +
for an arbitrary ). Another words, the density is the largest number , such that8 !
EÐ8Ñ   8 8 −!  for all . Schnirel'mann proves the following result:

Theorem 5. .Any set of natural numbers having a positive density is a basis

This theorem cannot be directly applied to the set  of prime numbers, augmented byT
the number , because the resulting set has density equal to zero. (Chebyshev proved that"
the number , of prime numbers not exceeding , is less than for some ;1Ð8Ñ 8 G8Î 8ß Glog
See the paper by V. Tikhomorov, “On the Chebyshev's theorem about the distribution of
prime numbers”, , No. 6, 1994)Kvant

However, Schnirel'mann has proved that  has a positive density, from which itT Š T
follows that  is a basis. We recall, that Euler's question whether or not the set T T Š T
contains all even numbers remains open.

We will prove Theorem 5. The assertion will follow from the following two lemmas.

Lemma 1. If  and , then .EßF − .ÐEÑ  .ÐFÑ  " E Š F œ 
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Proof. Fix . If  then . If  then consider two subsets of8 − 8 − F 8 − E ŠF 8 Â F
the interval :  and  They are guaranteed toÒ"ß 8Ó Ö+ − E À + Ÿ 8× Ö8  , À , − Fß , Ÿ 8×
intersect, since the first set has at least  elements, the second has at least 8 † .ÐFÑ 8 † .ÐFÑ
elements and . Consequently,  for some ,8 † .ÐEÑ  8 † .ÐFÑ  8 + œ 8  , + − E
, − F 8 œ +  , − E ŠF, so that .

Lemma 2. (Schnirel'mann inequality) For arbitrary  and  we have theE F § 
following

.ÐE Š FÑ   .ÐEÑ  .ÐFÑ  .ÐEÑ † .ÐFÑÞ

Proof. Set , and . Fix . We have to estimateG œ EŠFß œ .ÐFÑ œ .ÐFÑ 8 −! " 
the number  from below.  Let ,  be all the elements of the setGÐ8Ñ +  á  + < œ EÐ8Ñ" <

E Ò"ß 8Ó Ò"ß 8Ó which are also in the interval . The interval  is partitioned by the numbers
+ ßá ß + <  " 6 œ +  "ß" < " " into subintervals (some of these may be empty) of lengths 
6 œ +  + âß 6 œ 8  + 5 † 6# # " <" < 5

>2, . The such subinterval contains at least  numbers"
from . For  these are numbers of the form , where , and forG 5  " +  , , − F , Ÿ 6 ß5" 5

5 œ " F 6 these are numbers from , that are larger than . From this we deduce the"

following estimate:

GÐ8Ñ   <  † 6 œ <  Ð8  <Ñ œ Ð"  Ñ<  8   Ð"  Ñ 8  8" " " " " ! "" 5

which implies that .ÐGÑ   Ð"  Ñ  œ   Þ" ! " ! " !"

We now prove the Theorem 5 from Lemmas 1 and 2. The inequality in Lemma 2 can
be written as

"  .ÐE Š FÑ Ÿ Ð"  .ÐEÑÑ ‚ Ð"  .ÐFÑÑ

In this form it can be extended (by induction) to the arbitrary number of terms:

"  .ÐE Šá ŠE Ñ Ÿ Ð"  .ÐE ÑÑÞ" 8 3

3œ"

8$
Suppose now  is a set with positive density andE

E œ EŠá ŠE5

be the sum of  terms, each one equal to . The last inequality shows that 5 E .ÐE Ñ5
approaches 1 with increasing . Let  be such that . It follows from Lemma 15 5 .ÐEÑ  "Î#
that This proves Theorem 5.E œ Þ#5 

For every  let  be the set of all the powers. Is  a basis?8 − [ œ Ö" ß # ßá× 8 [ 8 8 >2
8

This is what's called the Waring's problem. The question was answered in a positive way
by Hilbert at the beginning of (the 20 , tr.) century. The solution turned out to be quite>2

complicated. Theorem 5 allows one to obtain another solution: It is sufficient to show
that the -fold sum  is of positive density for sufficiently large . An5 [ Šá Š[ 58 8
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elementary (but very complicated) solution of the Waring's problem, based on the
Schnirel'mann method, can be found in the book by Khinchine [1].

In conclusion, we make several remarks.

1. From Proposition 1 we can deduce the following result:

Brouwer's Theorem. There does not exist a continuous map of the disk  into theJ H
circle  which fixes the points on the boundary, such that  for all .W JÐBÑ œ B B − W" "

Indeed, the identity transformation on the circle bounding the disk has degree ,"
hence it cannot be extended to the mapping . From this one can easilyJ À H È W"

deduce the theorem about a fixed point: for any transformation  there isJ À H È H
B − H JÐBÑ œ BÞ such that 

The concept of degree of the transformation can be extended to a transformation of
the -dimensional sphere, and one can use this concept to prove the fixed point theorem8
for the -dimensional ball. This was done by Brouwer in the early part of thisÐ8  "Ñ
century (20 , tr.) and the result was a spectacular achievement of the emerging field of>2

mathematics topology.

2. A well known geometer Boris Nikolaevich Delone, when commenting on the
Schnirelman's theorem about the squares inscribed in a curve, noticed that if the curve in
question is convex, the theorem can be proved by elementary methods. We encourage
you to try to find such an elementary proof for yourself.

3. Suppose  be the sequence of all the squares of the naturalE œ Ö"ß %ß *ß "'ßá×
numbers. We remarked that . Do you know what are the sets EŠEŠEŠE œ EŠE
and ? The first set actually consists of all the integers, whose factorizationEŠEŠE
into primes has the property that all the primes of the form  occurring in the%5  $
factorization, appear with an even exponent. The second set is obtained from the first by
adding all the numbers of the form % Ð),  (ÑÞ+

4. In connection with Lemma 2 let us quote (with some abbreviations) from the book
[1]: “In the fall of 1931 when Schnirel'mann talked about his discussion in Göttingen
with E. Landau, he reported that he established the following interesting fact: For all the
examples he could think of, the inequality

.ÐE Š FÑ   .ÐEÑ  .ÐFÑ  .ÐEÑ.ÐFÑ

can be replaced with a stronger, and simpler inequality:

.ÐE Š FÑ   .ÐEÑ  .ÐFÑ

(provided that . The first attempts to prove this conjecture were.ÐEÑ  .ÐFÑ Ÿ "Ñ
unsuccessful. The problem became fashionable. The mathematical community was
fascinated by it. A good half of the English mathematicians put aside whatever they were
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doing and were working on trying to find the proof. But, the problem turned out to be
quite stubborn, and for many it years resisted all the attempts, some of which used the
most sophisticated of methods. Only in 1942 it was finally cracked by a young American
mathematician Mann.”

The proof of the Landau-Schnirel'mann conjecture can be found in the Khinchin's
book [1]. We strongly encourage the readers to get acquainted with this remarkable book.

Equally deserving your attention is the book by Schnirel'mann himself [2]. You can
find there the proof of Lagrange's theorem about the sum of four squares, the proofs of
the great Fermat theorem for the exponents 3 and 4, as well as many other things.
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